Noah King Noah King
0 Course Enrolled • 0 Course CompletedBiography
MLS-C01 Testantworten & MLS-C01 Schulungsunterlagen
Um keine Reue und Bedauern in Ihrem Leben zu hinterlassen, sollen Sie jede Gelegenheit ergreifen, um das Leben zu vebessern. Haben Sie das gemacht? Die Fragenkataloge zur Amazon MLS-C01 Zertifizierungsprüfung von ZertPruefung helfen den IT-Fachleuten, die Erfolg erzielen wollen, die Amazon MLS-C01 Zertifizierungsprüfung zu bestehen. Um den Erfolg nicht zu verpassen, machen Sie doch schnell.
Um für die Amazon MLS-C01 Zertifizierungsprüfung berechtigt zu sein, müssen Kandidaten mindestens ein Jahr Erfahrung in der Gestaltung und Implementierung von maschinellen Lernlösungen unter Verwendung von AWS-Diensten haben. Sie sollten auch Erfahrung in der Daten-Preprocessing, Merkmal-Engineering, Modell-Auswahl und Modell-Evaluation haben. Zusätzlich sollten Kandidaten Kenntnisse in Programmiersprachen wie Python, R und Java haben.
MLS-C01 Schulungsunterlagen, MLS-C01 Lernressourcen
Wenn Sie sich auf Amazon MLS-C01 Prüfung vorbereiten, ist es nicht eine gute Weise für Sie, alle Kenntnisse für die Prüfungen ziellos auswendig zu lernen. Tatsächlich gibt es die Lernmethode, die Amazon MLS-C01 Prüfung leichter zu bestehen. Wenn Sie die guten Geräte benutzen, können Sie weniger Zeit verwenden. Und Es ist auch die Garantie, die Amazon MLS-C01 Prüfung zu bestehen. Was ist das Gerät? Natürlich ist die Amazon MLS-C01 Dumps von ZertPruefung.
Amazon AWS Certified Machine Learning - Specialty MLS-C01 Prüfungsfragen mit Lösungen (Q314-Q319):
314. Frage
A company wants to classify user behavior as either fraudulent or normal. Based on internal research, a Machine Learning Specialist would like to build a binary classifier based on two features: age of account and transaction month. The class distribution for these features is illustrated in the figure provided.
Based on this information which model would have the HIGHEST accuracy?
- A. Support vector machine (SVM) with non-linear kernel
- B. Logistic regression
- C. Long short-term memory (LSTM) model with scaled exponential linear unit (SELL))
- D. Single perceptron with tanh activation function
Antwort: A
315. Frage
A large mobile network operating company is building a machine learning model to predict customers who are likely to unsubscribe from the service. The company plans to offer an incentive for these customers as the cost of churn is far greater than the cost of the incentive.
The model produces the following confusion matrix after evaluating on a test dataset of 100 customers:
Based on the model evaluation results, why is this a viable model for production?
- A. The model is 86% accurate and the cost incurred by the company as a result of false negatives is less than the false positives.
- B. The precision of the model is 86%, which is less than the accuracy of the model.
- C. The model is 86% accurate and the cost incurred by the company as a result of false positives is less than the false negatives.
- D. The precision of the model is 86%, which is greater than the accuracy of the model.
Antwort: C
Begründung:
Based on the model evaluation results, this is a viable model for production because the model is 86% accurate and the cost incurred by the company as a result of false positives is less than the false negatives. The accuracy of the model is the proportion of correct predictions out of the total predictions, which can be calculated by adding the true positives and true negatives and dividing by the total number of observations. In this case, the accuracy of the model is (10 + 76) / 100 = 0.86, which means that the model correctly predicted
86% of the customers' churn status. The cost incurred by the company as a result of false positives and false negatives is the loss or damage that the company suffers when the model makes incorrect predictions. A false positive is when the model predicts that a customer will churn, but the customer actually does not churn. A false negative is when the model predicts that a customer will not churn, but the customer actually churns. In this case, the cost of a false positive is the incentive that the company offers to the customer who is predicted to churn, which is a relatively low cost. The cost of a false negative is the revenue that the company loses when the customer churns, which is a relatively high cost. Therefore, the cost of a false positive is less than the cost of a false negative, and the company would prefer to have more false positives than false negatives.
The model has 10 false positives and 4 false negatives, which means that the company's cost is lower than if the model had more false negatives and fewer false positives.
316. Frage
A company offers an online shopping service to its customers. The company wants to enhance the site's security by requesting additional information when customers access the site from locations that are different from their normal location. The company wants to update the process to call a machine learning (ML) model to determine when additional information should be requested.
The company has several terabytes of data from its existing ecommerce web servers containing the source IP addresses for each request made to the web server. For authenticated requests, the records also contain the login name of the requesting user.
Which approach should an ML specialist take to implement the new security feature in the web application?
- A. Use Amazon SageMaker to train a model using the IP Insights algorithm. Schedule updates and retraining of the model using new log data nightly.
- B. Use Amazon SageMaker to train a model using the Object2Vec algorithm. Schedule updates and retraining of the model using new log data nightly.
- C. Use Amazon SageMaker Ground Truth to label each record as either a successful or failed access attempt. Use Amazon SageMaker to train a binary classification model using the IP Insights algorithm.
- D. Use Amazon SageMaker Ground Truth to label each record as either a successful or failed access attempt. Use Amazon SageMaker to train a binary classification model using the factorization machines (FM) algorithm.
Antwort: A
Begründung:
The IP Insights algorithm is designed to capture associations between entities and IP addresses, and can be used to identify anomalous IP usage patterns. The algorithm can learn from historical data that contains pairs of entities and IP addresses, and can return a score that indicates how likely the pair is to occur. The company can use this algorithm to train a model that can detect when a customer is accessing the site from a different location than usual, and request additional information accordingly. The company can also schedule updates and retraining of the model using new log data nightly to keep the model up to date with the latest IP usage patterns.
The other options are not suitable for this use case because:
* Option A: The factorization machines (FM) algorithm is a general-purpose supervised learning algorithm that can be used for both classification and regression tasks. However, it is not optimized for capturing associations between entities and IP addresses, and would require labeling each record as either a successful or failed access attempt, which is a costly and time-consuming process.
* Option C: The IP Insights algorithm is a good choice for this use case, but it does not require labeling each record as either a successful or failed access attempt. The algorithm is unsupervised and can learn from the historical data without labels. Labeling the data would be unnecessary and wasteful.
* Option D: The Object2Vec algorithm is a general-purpose neural embedding algorithm that can learn low-dimensional dense embeddings of high-dimensional objects. However, it is not designed to capture associations between entities and IP addresses, and would require a different input format than the one provided by the company. The Object2Vec algorithm expects pairs of objects and their relationship labels or scores as inputs, while the company has data containing the source IP addresses and the login names of the requesting users.
IP Insights - Amazon SageMaker
Factorization Machines Algorithm - Amazon SageMaker
Object2Vec Algorithm - Amazon SageMaker
317. Frage
An e-commerce company needs a customized training model to classify images of its shirts and pants products The company needs a proof of concept in 2 to 3 days with good accuracy Which compute choice should the Machine Learning Specialist select to train and achieve good accuracy on the model quickly?
- A. r5.2xlarge (memory optimized)
- B. m5 4xlarge (general purpose)
- C. p3 8xlarge (GPU accelerated computing)
- D. p3.2xlarge (GPU accelerated computing)
Antwort: D
Begründung:
Image classification is a machine learning task that involves assigning labels to images based on their content.
Image classification can be performed using various algorithms, such as convolutional neural networks (CNNs), which are a type of deep learning model that can learn to extract high-level features from images. To train a customized image classification model, the e-commerce company needs a compute choice that can support the high computational demands of deep learning and provide good accuracy on the model quickly. A GPU accelerated computing instance, such as p3.2xlarge, is a suitable choice for this task, as it can leverage the parallel processing power of GPUs to speed up the training process and reduce the training time. A p3.
2xlarge instance has one NVIDIA Tesla V100 GPU, which can provide up to 125 teraflops of mixed- precision performance and 16 GB of GPU memory. A p3.2xlarge instance can also use various deep learning frameworks, such as TensorFlow, PyTorch, MXNet, etc., to build and train the image classification model. A p3.2xlarge instance is also more cost-effective than a p3.8xlarge instance, which has four NVIDIA Tesla V100 GPUs, as the latter may not be necessary for a proof of concept with a small dataset. Therefore, the Machine Learning Specialist should select p3.2xlarge as the compute choice to train and achieve good accuracy on the model quickly.
References:
* Amazon EC2 P3 Instances - Amazon Web Services
* Image Classification - Amazon SageMaker
* Convolutional Neural Networks - Amazon SageMaker
* Deep Learning AMIs - Amazon Web Services
318. Frage
An ecommerce company has used Amazon SageMaker to deploy a factorization machines (FM) model to suggest products for customers. The company's data science team has developed two new models by using the TensorFlow and PyTorch deep learning frameworks. The company needs to use A/B testing to evaluate the new models against the deployed model.
...required A/B testing setup is as follows:
* Send 70% of traffic to the FM model, 15% of traffic to the TensorFlow model, and 15% of traffic to the Py Torch model.
* For customers who are from Europe, send all traffic to the TensorFlow model
..sh architecture can the company use to implement the required A/B testing setup?
- A. Create two production variants for the TensorFlow and PyTorch models. Specify the weight for each production variant in the SageMaker endpoint configuration. Update the existing SageMaker endpoint with the new configuration. To send traffic to the TensorFlow model for customers who are from Europe, set the TargetVariant header in the request to point to the variant name of the TensorFlow model.
- B. Create two new SageMaker endpoints for the TensorFlow and PyTorch models in addition to the existing SageMaker endpoint. Create a Network Load Balancer. Create a target group for each endpoint.
Configure listener rules and add weight to the target groups. To send traffic to the TensorFlow model for customers who are from Europe, create an additional listener rule to forward traffic to the TensorFlow target group. - C. Create two new SageMaker endpoints for the TensorFlow and PyTorch models in addition to the existing SageMaker endpoint. Create an Application Load Balancer Create a target group for each endpoint. Configure listener rules and add weight to the target groups. To send traffic to the TensorFlow model for customers who are from Europe, create an additional listener rule to forward traffic to the TensorFlow target group.
- D. Create two production variants for the TensorFlow and PyTorch models. Create an auto scaling policy and configure the desired A/B weights to direct traffic to each production variant Update the existing SageMaker endpoint with the auto scaling policy. To send traffic to the TensorFlow model for customers who are from Europe, set the TargetVariant header in the request to point to the variant name of the TensorFlow model.
Antwort: A
Begründung:
Explanation
The correct answer is D because it allows the company to use the existing SageMaker endpoint and leverage the built-in functionality of production variants for A/B testing. Production variants can be used to test ML models that have been trained using different training datasets, algorithms, and ML frameworks; test how they perform on different instance types; or a combination of all of the above1. By specifying the weight for each production variant in the endpoint configuration, the company can control how much traffic to send to each variant. By setting the TargetVariant header in the request, the company can invoke a specific variant directly for each request2. This enables the company to implement the required A/B testing setup without creating additional endpoints or load balancers.
References:
1: Production variants - Amazon SageMaker
2: A/B Testing ML models in production using Amazon SageMaker | AWS Machine Learning Blog
319. Frage
......
ZertPruefung ist eine spezielle Website, die Schulungsunterlagen zur Amazon MLS-C01 Zertifizierungsprüfung bietet. Hier werden Ihre Fachkenntnisse nicht nur befördert werden. Und Sie können yuach die Prüfung einmalig bestehen. Die Schulungsunterlagen von ZertPruefung werden von den erfahrungsreichen Fachleuten nach ihren Erfahrungen und Kenntnissen bearbeitet. Sie sind von guter Qualität und extrem genau. ZertPruefung wird Ihnen helfen, nicht nur die Amazon MLS-C01 Zertifizierungsprüfung zu bestehen, sondern auch Ihre Fachkenntnisse zu konsolidieren. Außerdem genießen Sie einen einjährigen Update-Service.
MLS-C01 Schulungsunterlagen: https://www.zertpruefung.ch/MLS-C01_exam.html
- Hilfsreiche Prüfungsunterlagen verwirklicht Ihren Wunsch nach der Zertifikat der AWS Certified Machine Learning - Specialty 📱 Erhalten Sie den kostenlosen Download von ➤ MLS-C01 ⮘ mühelos über 【 www.pass4test.de 】 👭MLS-C01 Deutsche Prüfungsfragen
- MLS-C01 Online Test 🅱 MLS-C01 Zertifikatsfragen ♥ MLS-C01 Prüfungs-Guide 🦚 Erhalten Sie den kostenlosen Download von 《 MLS-C01 》 mühelos über ▷ www.itzert.com ◁ 🎷MLS-C01 Fragen Antworten
- MLS-C01 Lerntipps 🥜 MLS-C01 Pruefungssimulationen 🌀 MLS-C01 Deutsch Prüfungsfragen 🐢 Sie müssen nur zu ▶ www.zertfragen.com ◀ gehen um nach kostenloser Download von ➽ MLS-C01 🢪 zu suchen 🦗MLS-C01 Testking
- MLS-C01 Mit Hilfe von uns können Sie bedeutendes Zertifikat der MLS-C01 einfach erhalten! ✈ Suchen Sie auf der Webseite ⏩ www.itzert.com ⏪ nach ⮆ MLS-C01 ⮄ und laden Sie es kostenlos herunter 🤰MLS-C01 Testking
- MLS-C01 Fragenpool 🥃 MLS-C01 Prüfung 🌒 MLS-C01 Zertifizierungsantworten 🐀 Geben Sie [ www.zertfragen.com ] ein und suchen Sie nach kostenloser Download von ✔ MLS-C01 ️✔️ 📣MLS-C01 Online Test
- MLS-C01 Prüfungs-Guide ⛲ MLS-C01 Testking 🧝 MLS-C01 Zertifizierungsantworten 📔 Suchen Sie jetzt auf ➠ www.itzert.com 🠰 nach ▶ MLS-C01 ◀ und laden Sie es kostenlos herunter 🔁MLS-C01 Echte Fragen
- MLS-C01 Dumps und Test Überprüfungen sind die beste Wahl für Ihre Amazon MLS-C01 Testvorbereitung 🌼 URL kopieren ➡ www.zertpruefung.ch ️⬅️ Öffnen und suchen Sie ✔ MLS-C01 ️✔️ Kostenloser Download 💨MLS-C01 Lerntipps
- MLS-C01 Echte Fragen ⏏ MLS-C01 Lernhilfe 🦍 MLS-C01 Echte Fragen 🐄 Öffnen Sie die Website ➥ www.itzert.com 🡄 Suchen Sie ➠ MLS-C01 🠰 Kostenloser Download 🏌MLS-C01 Online Test
- Seit Neuem aktualisierte MLS-C01 Examfragen für Amazon MLS-C01 Prüfung 🕑 Erhalten Sie den kostenlosen Download von ➥ MLS-C01 🡄 mühelos über ➤ www.pruefungfrage.de ⮘ 🕵MLS-C01 Pruefungssimulationen
- MLS-C01 Online Test 🟤 MLS-C01 Kostenlos Downloden 🤠 MLS-C01 Quizfragen Und Antworten ➡ Suchen Sie jetzt auf 「 www.itzert.com 」 nach 【 MLS-C01 】 um den kostenlosen Download zu erhalten 🧧MLS-C01 Fragen Antworten
- Aktuelle Amazon MLS-C01 Prüfung pdf Torrent für MLS-C01 Examen Erfolg prep 📧 Suchen Sie auf ☀ www.examfragen.de ️☀️ nach 【 MLS-C01 】 und erhalten Sie den kostenlosen Download mühelos 💡MLS-C01 Deutsch Prüfungsfragen
- uniway.edu.lk, feiscourses.com, mpgimer.edu.in, owenwhi254.qodsblog.com, ticketexam.com, gracead593.dailyhitblog.com, shortcourses.russellcollege.edu.au, careerbolt.app, shortcourses.russellcollege.edu.au, infocode.uz