Mike Hall Mike Hall
0 Course Enrolled • 0 Course CompletedBiography
高效的Oracle 1Z0-184-25證照考試是行業領先材料&最佳的1Z0-184-25:Oracle AI Vector Search Professional
如果你是找考試資料或學習書籍?試試我們的免費的 Oracle 的 1Z0-184-25 考題吧!這是一個免費試用考試PDF測試版本的考題,你可以類比真實的考試情景,可以快速讓你掌握 Oracle 的基礎知識。我們的 1Z0-184-25 權威考試題庫軟體是 Oracle 認證廠商的授權產品。正確率100%,讓你一次性輕松通過 Oracle 1Z0-184-25 考試。
Oracle 1Z0-184-25 考試大綱:
主題 | 簡介 |
---|---|
主題 1 |
|
主題 2 |
|
主題 3 |
|
最新的1Z0-184-25認證考試的學習資料
在VCESoft網站上你可以免費下載我們提供的關於Oracle 1Z0-184-25認證考試的部分考題及答案測驗我們的可靠性。VCESoft提供的產品是可以100%把你推上成功,那麼IT行業的巔峰離你又近了一步。
最新的 Oracle Database 23ai 1Z0-184-25 免費考試真題 (Q54-Q59):
問題 #54
When using SQL*Loader to load vector data for search applications, what is a critical consideration regarding the formatting of the vector data within the input CSV file?
- A. Rely on SQL*Loader's automatic normalization of vector data
- B. Enclose vector components in curly braces ({})
- C. As FVEC is a binary format and the vector dimensions have a known width, fixed offsets can be used to make parsing the vectors fast and efficient
- D. Use sparse format for vector data
答案:B
解題說明:
SQLLoader in Oracle 23ai supports loading VECTOR data from CSV files, requiring vectors to be formatted as text. A critical consideration is enclosing components in curly braces (A), e.g., {1.2, 3.4, 5.6}, to match the VECTOR type's expected syntax (parsed into FLOAT32, etc.). FVEC (B) is a binary format, not compatible with CSV text input; SQLLoader expects readable text, not fixed offsets. Sparse format (C) isn't supported for VECTOR columns, which require dense arrays. SQLLoader doesn't normalize vectors automatically (D); formatting must be explicit. Oracle's documentation specifies curly braces for CSV-loaded vectors.
問題 #55
Which PL/SQL function converts documents such as PDF, DOC, JSON, XML, or HTML to plain text?
- A. DBMS_VECTOR_CHAIN.UTL_TO_TEXT
- B. DBMS_VECTOR.TEXT_TO_PLAIN
- C. DBMS_VECTOR.CONVERT_TO_TEXT
- D. DBMS_VECTOR_CHAIN.UTL_TO_CHUNKS
答案:A
解題說明:
In Oracle Database 23ai, DBMS_VECTOR_CHAIN.UTL_TO_TEXT is the PL/SQL function that converts documents in formats like PDF, DOC, JSON, XML, or HTML into plain text, a key step in preparing data for vectorization in RAG workflows. DBMS_VECTOR.TEXT_TO_PLAIN (A) is not a valid function. DBMS_VECTOR_CHAIN.UTL_TO_CHUNKS (C) splits text into smaller segments, not converts documents. DBMS_VECTOR.CONVERT_TO_TEXT (D) does not exist in the documented packages. UTL_TO_TEXT is part of the DBMS_VECTOR_CHAIN package, designed for vector processing pipelines, and is explicitly noted for document conversion in Oracle's documentation.
問題 #56
Which statement best describes the core functionality and benefit of Retrieval Augmented Generation (RAG) in Oracle Database 23ai?
- A. It empowers LLMs to interact with private enterprise data stored within the database, leading to more context-aware and precise responses to user queries
- B. It primarily aims to optimize the performance and efficiency of LLMs by using advanced data retrieval techniques, thus minimizing response times and reducing computational overhead
- C. It allows users to train their own specialized LLMs directly within the Oracle Database environment using their internal data, thereby reducing reliance on external AI providers
- D. It enables Large Language Models (LLMs) to access and process real-time data streams from diverse sources to generate the most up-to-date insights
答案:A
解題說明:
RAG in Oracle Database 23ai combines vector search with LLMs to enhance responses by retrieving relevant private data from the database (e.g., via VECTOR columns) and augmenting LLM prompts. This (A) improves context-awareness and precision, leveraging enterprise-specific data without retraining LLMs. Optimizing LLM performance (B) is a secondary benefit, not the core focus. Training specialized LLMs (C) is not RAG's purpose; it uses existing models. Real-time streaming (D) is possible but not the primary benefit, as RAG focuses on stored data retrieval. Oracle's RAG documentation emphasizes private data integration for better LLM outputs.
問題 #57
How is the security interaction between Autonomous Database and OCI Generative AI managed in the context of Select AI?
- A. By encrypting all communication between the Autonomous Database and OCI Generative AI using TLS/SSL protocols
- B. By establishing a secure VPN tunnel between the Autonomous Database and OCI Generative AI service
- C. By requiring users to manually enter their OCI API keys each time they execute a natural language query
- D. By utilizing Resource Principals, which grant the Autonomous Database instance access to OCI Generative AI without exposing sensitive credentials
答案:D
解題說明:
In Oracle Database 23ai's Select AI, security between the Autonomous Database and OCI Generative AI is managed using Resource Principals (B). This mechanism allows the database instance to authenticate itself to OCI services without hardcoding credentials, enhancing security by avoiding exposure of sensitive keys. TLS/SSL encryption (A) is used for data-in-transit security, but it's a complementary layer, not the primary management method. A VPN tunnel (C) is unnecessary within OCI's secure infrastructure and not specified for Select AI. Manual API key entry (D) is impractical and insecure for automated database interactions. Oracle's documentation on Select AI highlights Resource Principals as the secure, scalable authentication method.
問題 #58
Why would you choose to NOT define a specific size for the VECTOR column during development?
- A. Different external embedding models produce vectors with varying dimensions and data types
- B. It limits the length of text that can be vectorized
- C. It impacts the accuracy of similarity searches
- D. It restricts the database to a single embedding model
答案:A
解題說明:
In Oracle Database 23ai, a VECTOR column can be defined with a specific size (e.g., VECTOR(512, FLOAT32)) or left unspecified (e.g., VECTOR). Not defining a size (D) provides flexibility during development because different embedding models (e.g., BERT, SentenceTransformer) generate vectors with varying dimensions (e.g., 768, 384) and data types (e.g., FLOAT32, INT8). This avoids locking the schema into one model, allowing experimentation. Accuracy (A) isn't directly impacted by size definition; it depends on the model and metric. A fixed size doesn't restrict the database to one model (B) but requires matching dimensions. Text length (C) affects tokenization, not vector dimensions. Oracle's documentation supports undefined VECTOR columns for flexibility in AI workflows.
問題 #59
......
通過Oracle 1Z0-184-25 認證考試的方法有很多種,花大量時間和精力來復習Oracle 1Z0-184-25 認證考試相關的專業知識是一種方法,通過少量時間和金錢選擇使用VCESoft的針對性訓練和練習題也是一種方法。
1Z0-184-25最新考題: https://www.vcesoft.com/1Z0-184-25-pdf.html
- 1Z0-184-25學習指南 🍜 1Z0-184-25考古題 🐷 1Z0-184-25熱門考古題 🧩 免費下載“ 1Z0-184-25 ”只需進入✔ www.newdumpspdf.com ️✔️網站1Z0-184-25權威認證
- 1Z0-184-25證照考試&認證考試材料的領導者和1Z0-184-25最新考題 🎳 ⇛ www.newdumpspdf.com ⇚最新[ 1Z0-184-25 ]問題集合1Z0-184-25最新題庫
- 1Z0-184-25資料 🏦 最新1Z0-184-25考題 🐵 1Z0-184-25 PDF 🐎 透過➠ www.kaoguti.com 🠰搜索( 1Z0-184-25 )免費下載考試資料1Z0-184-25學習指南
- 1Z0-184-25證照考試&認證考試材料的領導者和1Z0-184-25最新考題 🚘 開啟▛ www.newdumpspdf.com ▟輸入☀ 1Z0-184-25 ️☀️並獲取免費下載1Z0-184-25熱門考古題
- 1Z0-184-25熱門題庫 📅 1Z0-184-25在線考題 🤭 1Z0-184-25新版題庫上線 🦏 ( www.kaoguti.com )最新「 1Z0-184-25 」問題集合1Z0-184-25學習指南
- 最有效的1Z0-184-25證照考試-最新考試題庫幫助妳壹次性通過考試 ♿ 立即打開➠ www.newdumpspdf.com 🠰並搜索▛ 1Z0-184-25 ▟以獲取免費下載1Z0-184-25測試題庫
- 新版1Z0-184-25考古題 👰 1Z0-184-25考題資訊 🏸 1Z0-184-25考題資訊 ⌛ ☀ www.kaoguti.com ️☀️提供免費✔ 1Z0-184-25 ️✔️問題收集1Z0-184-25考題資訊
- 1Z0-184-25考古題 😞 1Z0-184-25指南 🟪 1Z0-184-25考試資料 🧖 免費下載( 1Z0-184-25 )只需在《 www.newdumpspdf.com 》上搜索1Z0-184-25 PDF
- 1Z0-184-25指南 🏗 1Z0-184-25測試題庫 ⏲ 1Z0-184-25 PDF 🤝 在⮆ www.kaoguti.com ⮄網站上免費搜索⮆ 1Z0-184-25 ⮄題庫1Z0-184-25熱門認證
- 1Z0-184-25最新考古題 👺 1Z0-184-25 PDF 💁 新版1Z0-184-25考古題 🙏 打開網站➡ www.newdumpspdf.com ️⬅️搜索「 1Z0-184-25 」免費下載1Z0-184-25新版題庫上線
- 最有效的1Z0-184-25證照考試-最新考試題庫幫助妳壹次性通過考試 🦪 ( www.kaoguti.com )是獲取▷ 1Z0-184-25 ◁免費下載的最佳網站1Z0-184-25熱門題庫
- 1Z0-184-25 Exam Questions
- eduhubx.com staging.learninglive.site cursosunibra.com.br 47.95.39.161 matrixprouniversity.com www.qianqi.cloud skillshareacademy.com tijaabo.dadweynahacilmi.com www.lms.khinfinite.in www.kelaspemula.com